
y/l��

Weaves as an Interconnection Fabric for ASIMs

Nanosatellites

and

Michael M. Gorlick

The Aerospace Corporation
P.O. Box 92957

Los Angeles, California 90009

gorlick@aero, org

Abstract

Many of the micromachines under consideration re-

quire computer support, indeed, one of the appeals of

this technology is the ability to intermix mechanical,

optical, analog, and digital devices on the same sub-

strata. The amount of computer power is rarely an

issue, the sticking point is the complexity of the soft-

ware required to make effective use of these devices.

Micromachines are the nanotechnologist's equiva-

lent of "golden screws," in other words, they will

be piece parts in larger assemblages. For example,
a nanosatellite may be composed of stacked silicon
wafers where each wafer contains hundreds to thou-

sands of micromachines, digital controllers, general-

purpose computers, memories, and high-speed bus in-

terconnects. Comparatively few of these devices will

be custom designed, most will be stock parts selected

from libraries and catalogs. The novelty wilt lie in the

interconnections, for example, a digital accelerometer

may be a component part in an adaptive suspension,

a monitoring element embedded in the wrapper of a

package, or a portion of the smart skin of a launch ve-
hicle. In each case this device must inter-operate with

other devices and probes for the purposes of command,
control, and communication.

We propose a software technology called weaves

that will permit large collections of micromachines

and their attendant computers to freely intercommu-

nicate while preserving modularity, transparency, and

flexibility. Weaves are composed of networks of com-

municating software components. The network, and

the components comprising it, may be changed even
while the software, and the devices it controls, is exe-

cuting. This unusual degree of software plasticity per-

mits micromachines to dynamically adapt the software

to changing conditions and allows system engineers

to rapidly and inexpensively develop special-purpose

software by assembling stock software components in

custom configurations.

1 Introduction

Without extensive software support nanomachines,

microdevices, and application-specific integreated mi-

croinstruments (ASIMs) are just so much fancy dirty

glass. Indeed from the perspective of a computer sci-
entist many of the devices being proposed can be re-

garded as multicomputers with "unusual" peripherals.

Another perspective, one which emphasizes their in-
formation content, regards these constructions as col-

lections of sensors, actuators, and transmuters, whose

purpose is to obtain, produce, and transform infor-

mation. Even small assemblages may require signif-

icant amounts of software. For example, a modern

rechargable electric razor contains about 2 kilobytes

of software, a digital thermostat about 12 kilobytes,
and an automotive emissions control system contains

in excess of 300 kilobytes of software. Satellites based

on nanotechnology will contain a wide assortment of

interconnected digitally mediated subsystems includ-

ing attitude control, power, navigation, communica-

tion, and sensors whose combined software elements

may easily exceed tens of megabytes. The economic

assembly of such systems will require:

,, software that can be assembled component-wise

from stock piece-parts;

• softwarethatcanbeflexiblyreorganizedtocope
with the introductionof novelcomponentsor
newcombinationsofcommonsubassemblies;and

• softwarethatcanbedynamicallyreconfiguredto
compensatefor hardwarefailuresor changesin
tilemissionof thesatellite.

Onemediumthataddressestheseissuesisweaves,
acomponent-basedapproachto softwarecomposition
andinterconnection.Weavesarenetworksof compo-
nentsit: whichstreamsof arbitraryobjectsflowfrom
onecomponentto another.Theyoccupyacomputa-
tionalnichemidwaybetweenfine-graindataflowand
large-grainstreamprocessing(asexemplifiedbyUnix
pipesandfilters).A detaileddiscussionofthecompu-
tationalandcommunicationsemanticsof weaves(in-
cludingthefeaturesthatdistinguishit fromdata-flow
languageslikeKhoros[2],Show-and-Tell[6],andPro-
graph[1])canbefoundin [5].Wehaveimplementeda
visualsoftwarecompositionandintegrationenviron-
mentfox"constructingsystemsasweaves.Theweave
visualeditor, Jacquard, provides users with mecha-

nisms for rapidly assembling weaves from components,

executing and observing weaves, and combining and

modifying weaves dynamically-- all using nothing but
point, click, drag, and drop. A more detailed view of

the environment for constructing weaves can be found

i,, [a].
Weaves are well suited for systems characterized

by processing on continuous or intermittent streams

of data, and they have been applied to such tasks

as satellite telemetry processing, tracking, and the

rapid prototyping of satellite ground stations. Fig-
ure 1 shows a portion of a stereo tracker implemented

as a weave. Weaves are comprised of sockets (which

are either unpopulated or populated), tool fragments,

and jumpers. Unpopulated sockets are placeholders

for tool fragments that consume objects as inputs and

produce objects as outputs. Jumpers between sockets

provide transport services for moving objects from one

place to another and thus define the topology of the

network. Users assemble weaves by interconnecting
sockets and populating each socket with a tool frag-

ment (which may itself be a weave). Type informa-

tion about the objects flowing through a connection is
specified by labeling the jumper.

Weaves adhere to the three rules of blind commu-
nication:

• no tool fragment in the network is aware of the

sources of its input objects or the destinations

of its output objects, consequently, all tool frag-
ments are independent of their position in the
topology of the network;

no tool fragment is aware of the semantics of the
transport services that are used to deliver its in-

put objects or transmit its output objects, con-

sequently, new transport services can be freely
substituted for old.

no tool fragment is aware of the loss of a con-

nection and to the extent that the computation

can continue it will, consequently, weaves can by

dyna_-nically edited and rewired without risking

the integrity of the weave.

Jumper
Correlalo Seniors I & 2

Populated
Socket

Unpol
Germrate Ciiindidllle Tracks

Figure 1: A portion of a weave-based stereo tracker.

Weaves were specifically designed to tackle the

problem of constructing large systems by composing

components and interconnections -- the visual equiv-

alent of a module-interconnection language. A weave
that contains one or more unpopulated sockets can

be thought of as a framework for an entire family of

implementations that are customized by populating

empty sockets with components. Figure 2 illustrates
such a framework for a sensor and its controller. The

sensor is connected to the controller via a feedback

loop through which the controller issues commands

and control messages to the sensor and receives sensor-
specific measurands and status information.

This weave can be used as a tool fragment in some

higher level construction since it contains an input pad
that passes commands and controls to the controller

socket in from the outside and an output pad that
transmits measurands and status from the controller

socket to the outside. Figure 3 illustrates a particular

instantiationof theframework,an integratedvibra-
tionsensor,that containsthetoolfragmentsto com-
mandandcontrolavibrationmicrosensoranddeliver
its measurementsto somehigherleveldevice.

In thefollowingsectionsweillustratehowweaves
canbeusedto integratelargenumbersofdiversemi-
croinstruments.Twodifferentapproachesareshown.
In Section2weexamineaweaveframeworkdesigned
tosupportasmallnumberof tightlycoupledmicroin-
strumentsboundtogetherasamultiparametersensor.
In Section3 weoutlinea weaveframeworkbasedon
messagebusesthat is suitablefor largenumbersof
looselycoupledsubsystemssuchasthat foundona
nanosatellite.Finallyin Section4 weframesomeof
theresearchquestionsthat mustberesolvedto make
thisapproachviable.

Command

Control

Controller
Measurand

v

Status

Sensor
v

Control

Maasurand v Status

Figure 2: A generic framework for a sensor and its
controller.

Command

Control

Controller
Measurand

Status

Sensor
v

Control

Measurand v Status

Figure 3: A instantiation of the generic sensor frame-
work as a vibration sensor.

2 Weaves for Multiparameter

Sensors

A multiparameter sensor module combines several

sensors on a single substrate. A simplified layout

of one such hypothetical module is showu in Fig-

ure 4. This module provides location, acceleration,

sound level, and the detection of one or more chemi-

cal species and contains an wireless link for the trans-

mission of telemetry and the receipt of commands.

It would be powered by a thin film battery layered
on the underside of the substrata and would be so

small (certainly no larger than a pack of cigarettes)

that it could pasted almost anywhere such telemetry

might be required. Possible applications include envi-

ronmental monitoring, industrial process control, and
launch vehicle data acquisition. Specialized versions

of such modules could be incorporated into the skins

and structures of aircraft or trucks, or strategically

placed on bridges or within buildings.

Multiparameter sensors offer three advantages over

a comparable collection of independent sensors:

all of the sensor readings are location correlated,

that is, all measurands are being collected at the

same location (within a few tens of millimeters);

the individual instruments can be tightly cou-

pled, for example, their sampling rates can be

phased or synchronized;

the activity or sampling frequency of one instru-

ment can be made dependent on the measurands

of another, for example, a multiparameter sensor

in a rocket motor compartment could increase

the sampling frequency of its temperature sen-
sor when the vibration level crosses a prepro-

grammed threshold.

It makes sound development and economic sense

that it should be as easy to construct control software

for a multiparameter module as it is to construct the

multiparameter module itself, that is, by combining

and interconnecting stock piece parts into a cohesive

whole. Logically the integration of an N parameter
sensor should be the flat composition of N individual

sensors, that is, for the multiparameter device that we

are considering all sensors are peers equitably sharing
a common substrate and resources such as power bus

and specialized services such as analog/digital conver-

sion. In the generic sensor framework sketched in the
introduction each individual sensor is comprised of a

GPS

Chemical

Species
Detector

I
I Wireless

r ND 'Transmitter

Accelerometer ,iConverter / Receiver
b

T

I
;

i i
i CPU & PROMS IPreamplifiers

I
i

i

i , Power

........... Amphfier

Acoustic
Self Test

Sensor !
Antennae

Figure 4: A hypothetical multiparameter sensor mod-
ule.

controller and the sensor proper. This base organiza-

tion suggests that a multiparameter sensor be orga-

ltized hierarchically where each sensor device has its

own local controller but reports to, and is commanded

by, a higher order controller which is responsible for

coordinating the activities of the individual sensors

and mediating resource contention.

A sample weave framework for such an organiza-

tion is shown in Figure 5. The framework is designed

to accomodate four independent devices; the changes

required for a different number of devices are obvi-

ous. The framework supports three different principal

classes of tool fragments. Moving from right to left

i_ Figure 5 the first class is represented by the "de-

vice" sockets which are intended for tool fragments

that are the "'embodiment" of the individual sensor

devices. These tool fragments are weaves in their own

right whose general form is suggested by Figures 2 and

3. Since weaves are indifferent to the composition or

form of the tool fragments that populate the sockets

of the framework these sensors can be arbitrarily com-

plex.

The second class is represented by the unpopulated

"router" socket in the middle of the network. Routers

are responsible for the distribution of command and

_:_mtrol messages from the higher level controller in

the multiparameter sensor to the individual sensor de-

vices. The router helps to insulate the controller from

the lnu[tiplicities of the sensors, and to a certain ex-

tent, from some of the characteristics of the sensors

themselves. The router can perform protocol conver-

sions or command translations to supply a uniform

unvarying interface to the controller.

The third and final class is represented on the far

left by the "controller" which is responsible for accept-

ing higher-level command and control and transform-

ing that into individual sensor commands. Using a

feedback loop analogous to that which appears in the

individual sensors it also accepts the N-way merged

output of the N sensors. Like the lower-order devices

that it controls, it has input and output pads thereby

permitting the entire multiparameter sensor itself to

be embedded in some higher-order device.

A particular instantiation of this framework is illus-

trated in Figure 6 where a wireless transceiver, an ac-

celerometer, a chemical species sniffer, and an acous-

tic sensor are combined into a single integrated mul-

tiparameter sensor. To the extent that the individual

sensors observe a common command and control pro-

tocol the high-level controller and its matching router

can be generic elements. Note that the same inter-

mixing of custom and stock software components can

be applied to both the controller and router which,

like any other tool fragment, may be weaves in their

own right. The combination of weave frameworks and

the hierarchical composition of weaves permit one to

construct the software for highly integrated, tightly

coupled multidevices in a straightforward and elegant

manner.

Conlroller

Router

o. = Commandv Control

= Measurand v Status

Device 0

Oev_e 2

Fair n-way

merge

Device 3

Figure 5: A weave framework for a generic multipa-

rameter sensor.

Conlroller

AouIer

eL = Commandv Control

= Measurandv Status

Wireless Transceiver

Accelerorneter | Fair n-way

Figure 6: A sample weave for a specific multiparame-
tersensor.

3 Weaves for Nanosatellites

Unlike a tightly integrated nmltiparameter sensor a

nanosatellite will be composed of a number of loosely

integrated subsystems. Those subsystems in turn will

encompass a broad degree of integration and coupling

ranging from lightly coupled systems that commu-

nicate infrequently or irregularly to highly coupled,

synchronized systems that require substantial band-

width. The multiparameter sensor described in Sec-

tion 2 illustrates some of the techniques required for

tight coupling among components. The interconnec-

tions among weave components in Figure 6 are all

point-to-point which is suitable for components that
intercommunicate frequently. However new compo-

nents can not be added to the weave without rewiring.

While weaves fully support rewiring on-the-fly during

execution dynamic editing may force the system into

an unsafe state due to temporal or behavioral con-
straints. Furthermore complex systems contain coop-

erating subsystems that exhibit a variety of commu-

nication behaviors ranging from infrequent, low band-

width communication to regular, frequent, high vol-
ume message traffic.

A highly integrated device such as a nanosatellite

will be composed from independent subsystems that

are mechanically, electrically, or optically integrated

with one another. For example, one might construct

a nanosatellite by stacking and bonding individual

wafers where each wafer is a stock subsystem (guid-

ance, batteries, power management,...). Ideally the

nanosatellite software should be able to recognize the

stacking arrangement and arrange its communication

paths accordingly. This capability would give system

designers the freedom to insert custom subsystems

without changing the software base that supports the

stock subsystems.

This capability will prove increasingly important
as swarms of nanosatellites cooperate to accomplish

a task. Hundreds of nanosatellites in close physical

proximity could organize themselves as a giant phased

array thereby allowing space system architects to as-

semble on-orbit powerful communications "megasatel-
lites" from individual satellites the size of a tea saucer.

It would be advantageous if the software structures of
the individual nanosatellites generalized smoothly to

the software structures required for the control and

management of swarms.

Hierarchical message buses [4] are flexible commu-

nication architectures that hold the promise of scaling

smoothly from a single nanosatellite to large groups

of independent, coordinated nanosatellites. We dis-
cuss below a bus-like communication structure that

significantly reduces the amount of coupling and there-

fore may be more appropriate for a collection of semi-

independent, cooperating subsystems.

Figure 7 illustrates a framework for a single mes-

sage bus. Imagine a weave assembled on a sheet of
paper where the sheet itself is a broadcast medium for

the transmission of objects. Taps into the medium

allow sockets to receive messages broadcast on the

sheet or to themselves send broadcast messages over

the sheet. This arrangement is typified by the socket

Alpha whose inputs arrive from a tap (an on-sheet re-

ceiver) and whose outputs are in turn transmitted (via
an on-sheet transmitter) to any other socket that has

a comparable tap into the sheet. As a consequence of

blind communication it is impossible for a tool frag
ment seated in the Alpha socket to determine if its

inputs are arriving courtesy of a point-to-point con-
nection or are obtained from a bus tap. Similarly, the

same tool fragment can not discover that its outputs

are being placed on the sheet bus for broadcast.

Sheets (message buses) can be cross-wired using
off-sheet transmitters and receivers. Each sheet has

a unique name. An off-sheet receiver is shown in Fig-
ure 7 that is receiving broadcast messages from a sheet

named Source. All of the messages broadcast on sheet

Source are being fed as inputs into the socket Beta.
Likewise all objects output by any tool fragment pop-

ulating socket Gamma will be broadcast on the sheet

named Sink by the off-sheet transmitter attached to

the output pad of Gamma.

Finally sheets, like any other weave, are permit-

Alpha Legend

1 - On-sheet Receiver

Beta

4 - Off-sheet Transmitter

5 - Input Terminal

6 - Output Terminal

Bus Input Filter

Delta

Bus Output Filter

Gamma

Sink

Sheet Bourldalty

Figure 7: A generic weave bus.

ted input and output terminals. Consequently a sheet

can be encapsulated as a tool fragment and may ap-
pear as a component in some higher-order weave. This

p_'rmits message buses to composed hierarchically and

dramatically reduces the scope and volume of the ob-

ject traffic on any one sheet (bus). The combina-
tion of hierarchical composition and inter-sheet cross-

wiring via off-sheet receivers and transmitters allows
system architects to construct complex multicast ar-

chitectures that scale as the number of sheets (subsys-

tems) increases.

To illustrate some of the possibilities we briefly

sketch a high-level nanosatellite software architecture

as shown in Figure 8. At the top level the spacecraft is

organized as a single sheet (message bus) with a sub-
weave responsible for each individual major subsys-

tem. The individual subsystems are each constructed

using a combination of point-to-point and bus topolo-

gies. A sample framework for the power subsystem

is given in Figure 9. It bears a strong resemblance

to the fi'amework for the integrated multiparameter

sensor shown in Figure 6 with a few important differ-

ences. In the power subsystem all of the outputs of the

controller are fed into a filter that generates two gran-

ularities of monitoring and status information. The

monitoring and status information that is fed to the

output terminal is of coarser grain than that fed to the

ou-sheet transmitter. The message traffic appearing
on the output terminal is a summary of the activities

of the power subsystem that is suitable for processing

by a higher-level controller or monitor. The message

traffic appearing on the power sheet itself is a finer-

grain, more detailed view of those same activities.

The flexibility of weaves and the bus-based architec-

ture outlined above make it possible to add monitoring

elements to the spacecraft architecture while the craft

is on-orbit without extensive weave "rewiring." Fig-

ure 10 illustrates this approach. A specialized monitor

has been added to the top-level spacecraft software

architecture. The inputs of the monitor are derived

from two sources, the spacecraft sheet and the power
subsystem sheet using an on-sheet and an off-sheet

receiver respectively. Note that this modification is

completely transparent to the power subsystem and

because no rewiring was required can be performed

without endangering the integrity of the craft as a

whole. When the monitor is no longer required it

can be safely removed and the software restored to

its original state. Similar techniques could be applied

for fault tolerance, hot sparing, on-orbit testing, or

reconfiguration.

PayIoacl Command &

Data Handling

Telemetry & Tracking

Attitude

Power

Propulsion

Mechanisms

Thermal

Figure 8: A generic spacecraft architecture.

4 Future Research

One outstanding problem is porting the weave run-

time infrastructure to a generic micromachine hard-
ware environment. This must be a cooperative ven-

ture between micromachinists and computer scien-

tists. The history of processor architectures is illu-

minating in this respect. For many years processor

architectures were designed by electrical engineers and

Filter Payload Command &

On-sheet Transmitter Data Handling

oController

8arteries

Output Terminal

Fair n-way

merge

Router

(x= Command v Control

= Measurand v Status
Charger

Oisyit_t_

,p

Figure 9: A power system framework.

device architects as if software didn't exist and proces-

sors were useful in their own right wholly independent
of software. We now understand that view to be mis-

guided and the rise in popularity of RISC architectures
is the outcome of a joint venture to arrive at architec-

tures that were designed from the outset to support

complex software.
The weave execution infrastructure is non-trivial

and makes numerous demands on the underlying op-

erating system. It also has strong implications for the
bus structure that is used as the communication path

among microdevices. The best of all possible worlds
would be to design micromachines and their digital
controllers with weaves in mind from the very be-

ginning including hooks for atomic weave components

(that is weave device drivers) where the bottom of the
weave ecology is connected to the particulars of the

custom devices provided by the micro-environment.

If one accepts the argument that the missing piece
in the weaves-to-micromachines picture is the soft-

ware/hardware glue, then we must build generic weave
components that can talk at the hardware level to a

mieromachine device, and at the same time, encour-

age micromachine hardware designers to settle on a

generic hardware interface structure that is, at worst,
not hostile to weaves. Once this is in place, it should

be relatively easy to demonstrate the viability and

power of weaves for the software structures of assem-

blages of micromachines. One attractive, low risk pos-

sibility is to simulate a micromachine assemblage us-

Telemetry & Tracking

Attitude

Power

Pr0pulsio_

Mechanisms

Thermal

Monitor

Figure 10: A spacecraft architecture with additional

monitoring.

ing chip-level components and construct a prototype
weave infrastructure for such a simulation.

References

[1] P. T. Cox, F. R. Giles, and T. Pietrzykowski.

Prograph: a step forward liberating programming
from textual conditioning. In Proceedings of the

1989 IEEE Workshop on Visual Languages. IEEE

Computer Society Press, 1989.

[2] R. A. Earnshaw and N. Wiseman. An Introduc-

tory Guide To Scientific Visualization, chapter 8.

Springer-Verlag, 1992.

[3] Michael Gorlick and Alex Quilici. Visual program-

ming in the large versus visual programming in the
small. In Proceedings of the 1994 IEEE Symposium

on Visual Languages, St. Louis, Missouri, October

1994. IEEE Computer Society Press.

[4] Michael M. Gorlick. Cricket: A domain-based

message bus for tool integration. In Proceedings of

the 2nd Irvine Software Symposium, Department
of Information and Computer Science, University

of California, Irvine, Irvine, CA 92717, March
1992. Irvine Research Unit in Software.

[5] MichaelM. GorlickandRamiR.Razouk.Using
weavesforsoftwareconstructionandanalysis.In
Proceedings of the ISth International Conference

on Software Engineering, pages 23-34, Austin,

Texas, May 1991. IEEE Computer Society Press.

[6] M. A. Najork and E. Golin. Enhancing Show-and-

Tell with a po[ymorphic type system and higher-

order functions. In Proceedings of the 1990 IEEE

Workshop on Visual Languages , pages 215-220.
IEEE Computer Society Press, 1990.

